Planning and simulation of LTE radio network: case of the city of Yaoundé

Raphaël Nlend¹, Emmanuel Tonye²

^{1&2}(Department of Electrical and Telecommunications Engineering, National Advanced School of Engineering, University of Yaoundé 1, Cameroon) Corresponding Author: Raphaël Nlend

Abstract: This article is a simulation of the LTE network, in the 1800 MHz band on a 20 MHz channel, using ATOLL software in the city of Yaoundé, the capital of Cameroon, which covers an area of approximately 183 km2. This study, which takes into account existing 3G sites, does a coverage planning based on the COST-231 propagation model and the capacity planning based on a service and traffic models. The simulation results indicate that the city of Yaoundé requires 244 LTE sites. ATOLL simulations then display a received signal level of more than -95 dB in almost all the entire area of interest.

Keywords: LTE, coverage, capacity, traffic.

Date of Submission: 18-03-2019

Date of acceptance: 02-04-2019

I. Introduction

The rapid growth of technologies and mobile communications has contributed to the improvement of our daily lives. From the first generation of cellular networks providing analog communications to those currently developed, the technology is rapidly expanding driven by the search for greater accessibility and a better quality of service [1]. At the same time, user's throughput needs have also shifted from traditional voice communications to the delivery of multimedia content passing from the transmission of text messages to the access of broadband internet. All these requirements have motivated the need for new architectures for the emerging systems with issues related to quality of service, capacity and coverage. It is for this reason that the 3rd Generation Partnership Project (3GPP), which is currently the dominant specification development group for mobile radio communication systems in the world, developed the LTE (Long Term Evolution) standard.

The main aim of the LTE technology is to provide low latency wireless broadband data communications over long distances. It offers spectral flexibility that supports frequency bands from 450 MHz to 4.5 Ghz and bandwidths between 1.4 Mhz and 20 MHz [2]. LTE has an architecture that is based on the IP protocol. It is deployed with the Frequency Division Multiple Access (OFDMA) technique for downlink. While the uplink uses single carrier frequency division multiple access (SCDMA). These techniques provide higher data rates for users and their applications.

Another feature of LTE that increases the throughput over long distances is the Multiple Input and Output System (MIMO). MIMO is a multi-antenna technology that uses M antennas in transmission and N antennas in reception. This configuration is called the MxN MIMO system. The increase in the number of transmission antennas increases the average signal-to-noise ratio of reception and consequently the radius of the cell and the transmission data rates [3]. A simplified 4G LTE architecture is usually composed of "Packet Core", "eNodeB" and the user. The user connects to the network via the wireless air interface to the eNodeB. This wireless support is enhanced by the MIMO system that allows multiple streams of data to be transmitted and received simultaneously by multiple antennas [4]. The competitive advantage of LTE is therefore its ability to provide very high throughput and greater coverage to end users [5]

Several studies on LTE network planning in various parts of the world exist in the literature and are specific to a particular environment characterized by its habitat, urban morphology, terrain models and user density [6] [7] [8] [9].

Also the present work aims to carry out an LTE network planning in the city of Yaoundé thanks to a simulation with the ATOLL software. This is to facilitate the migration of 3G networks to 4G networks.

The rest of this study does, the coverage and capacity planning of the LTE network, the planning results and the simulation results in the city of Yaoundé.

II. Methodology

II.1 Determination of the number of sites to be deployed

This phase, which takes place only after the network deployment parameters have been chosen, has two stages: the coverage and capacity planning. These two steps will determine the number of sites necessary for the setting up of the 4G radio access network. The following figure illustrates the coverage and capacity planning process.

Fig. 1: Diagram illustrating the determination of the number of sites to be deployed

II.1.1 Coverage planning II.1.1.1 Link budget

a) Downlink link budget

The Effective Isotropic Radiated Power (EIRP) is obtained by adding the gain to the power emitted by the transmitter and subtracting the losses due to cable, connector and the human body.

The equation of the EIRP for the downlink is given by the expression below (1).

Where:

 P_{TX} :Transmission Power (dBm) G_{TX} :Antenna Gain (dB) L_{TX} :Transmission Losses (connector, cable and body)(dB)

The equation of the Receiver Sensitivity (RS) is determined by summing the thermal Noise, Noise Figure and Signal to Interference plus Noise Ratio. It is calculated using equation 2 below:

RS = kTB + NF + SINR(2) Where : k : Boltzman cons tan t (1.38x10⁻²⁰ mWs / K) T :temperature (K) NF : Noise Figure (dB) B: System bandwidth (Mhz) SINR : Signal to Interference plus Noise Ratio (dB)

The equation for the minimum signal reception strength can be formulated by adding the receiver side losses such as body loss, cable loss, interference margin, receiver sensitivity and subtracting the antenna gain. It is calculated using the equation in expression (3) below:

Minimum Signal reception Strenght = $RS + IM + L_{RX} - G_{RX}$ (3)

Where :

RS :Re ceiver Sensitivity (dBm) IM : Interference M arg in (dB)

 L_{RX} : Reception Losses (connector, cabbles and body)(dB)

 G_{RX} : Reception Gain (dB)

Equation (4) gives the expression for the maximum allowable path loss (MAPL) for downlink.

MAPL = EIRP - Minimum Receeption Signal Strenght - Penetration loss - FM(4)

Where :

EIRP : Effective Isotropic Radiated Power (dBm)

FM: Fading m arg in (dB)

b) Uplink link budget

A similar approach to that used for the downlink budget enables us to find path losses in the uplink direction.

II.1.1.2 Propagation Model

The use of the propagation model makes it possible to calculate the cell radius and the area covered by this cell. The COST 231 propagation model is the most adapted to our problem. It is formulated with the expression (5) in urban area.

$$L_{URBAN} = 46.3 - 33.9 \log(f) - 13.82 \log(h_{te}) - ah_{re} + (44.9 - 6.55 \log(h_{te}) \log(r) + CM)$$

 $\dots (5)$ CM = 3 db for urban areas

II.1.1.3 Calculation of the Cell radius and area

The calculation of the cell radius is given by equation (6) below.

$$r = 10^{\frac{L_{URBAN} - 46.3 - 39.9 \log f + 13.82 \log h_b + a(h_m)}{44.9 - 6.55 \log h_b}} \quad pour \, 1500 \, Mhz \le f \le 2000 \, Mhz \, \dots \dots \dots (6)$$

The cell coverage area can be obtained using equations (7) and (8).

For an omnidirectional site

$$L_{cell} = 2.6 x r^2$$
(7)

For a trisectorial site:

$$L_{cell} = 1.95 x 2.6 x r^2$$
(8)

II.1.1.4 Number of eNodeBs

The number of eNodeBs needed to cover the area of interest is the ratio of the area of the zone to that covered by a site or a cell:

 $Number of \ eNodeBs = \frac{area \ of \ the \ zone \ of \ int \ erest}{area \ of \ a \ site \ or \ a \ cell} \dots (9)$

II.1.2 Capacity planning II.1.2.1 Estimating the number subscribers

An estimated number of subscribers, in the year n, can be calculated using the equation (10).

 $U_n = U_0 (1 + f_p)^n$(10)

 U_n : number of subscribers in the year n

 \boldsymbol{U}_0 : number of subscribers during the planning of year

 f_n : subscriber growth factor

n : number of prediction years

II.1.2.2 Traffic density (Data volume per session)^[9]

The data volume per session is given by the formula (11):

 $Data volume \ per \ session = bearer \ rate * session \ time * session \ duty \ ratio * \left[\frac{1}{1 - BLER}\right] \dots (11)$

bearer _ *rate* : Service throughput per session of the application layer

session_time : Mean duration of a session

session_duty_ratio : Session Data transmission ratio per session

BLER : Block Error Rate

II.1.2.2 Single user throughput

Single user throughput (Kbps) = $\left(\sum_{k} (session \, data \, volume_{k} * BHSA_{k} * penetration \, rate_{k}) * \frac{1 + Peaktoaverageratio}{3600}\right)$

..... (12)

 $BHSA_k$: Number of attempts to service k during busy hours

 $penetration rate_k$: Penetration rate of service k

Peaktoaverageratio : Correction factor that takes into account the ratio between peak and mean traffics

The network throughput for the uplink and downlink directions can be calculated as follows;

Network _*throughput* _*UL* = *Total* _*Number* _*of users* * Sin *gle* _*user* _*throughput* _*UL*(13)

Network _*throughput* _*DL* = *Total* _*Number* _*of users* * Sin *gle* _*user* _*throughput* _*DL*(14)

II.1.2.3 Cell Capacity

For a bandwidth of 20 Mhz in the 1800 Mhz band, the uplink and downlink throughput in a sector of an eNodeB are given by the values below [9] :

 $DL_cell_capacity_S = 34.719$ Mbps , $DL_cell_capacity = 34.719x3 = 104,157$ Mbps $UL_cell_capacity_S = 21.675$ Mbps, $UL_cell_capacity = 21.675x3 = 65,025$ Mbps

II.1.2.4 Number of Cells

II.1 ATOLL planning software simulation phase

During this phase, simulations will be made using the ATOLL software following the procedure schematized by the block diagram of Figure 2.

III.1 – Site presentation

III. Planning Results

The city of Yaounde is located in the Centre region of Cameroon and lies between 3 $^{\circ}$ 52 'north latitude and 11 $^{\circ}$ 31' east longitude, with a population of 3.5 million inhabitants (estimated in 2018). The relief of the city is hilly and made of plateaus, a set of hills from that vary in altitude from 600 to 700 m and dominated by the mountains Mbam Minkom (1 295 m) and Mount Nkolodom (1 221 m) in the north western side and by Mount Eloumden (1,159 m) to the south western part. This city is spread over an area of 183 km² [11].

III.2 Coverage planning

Table 1 shows that the coverage planning of a 4G LTE network in the city of Yaoundé leads to the obtaining of a potential number of 145 eNodeBs.

General parameters	Uplink	Downlink
Duplex mode	FDM	FDM
Channel bandwidth (MHz)	20	20
Carrier frequency (MHz)	1800	1800
Target surface area (km2)	183	183
Transmitter	Tx = UE	Tx = eNodeB
Morphology	Urban	Urban
Maximum total T _r power (dB)	23	46
Resource to distribute power	4	100
Subcarriers to Distribute Power	48	1200
Tx Antenna Gain (dBi)	0	18
Tx Cable Loss (dB)	0	0,5
Tx Body loss (dB)	0	0
EIRP per Subcarrier (dBm)	6,19	32,71
Receiver	Rx-eNodeB	Rx-UE
Noise Figure (dB)	2,5	7
thermal noise (dBm)	-132,23	-132,24
SINR (dB)	-2,52	-3,39
Receiver Sensitivity (dBm)	-132,25	-128,63
Rx Antenna Gain (dBi)	18	0
Rx Cable Loss (dB)	0,5	0
Rx Body Loss	0	0
Interference Margin (dB)	0,87	3,67
Req Min received signal strength(dBm)	-148,88	-124,96
Penetration Loss (dB)	20	20
std of Shadow Fading (dB)	11,7	11,7
shawdow fading marging (dB)	9,48	9,48
Path loss	125,59	128,19
Propagation Model	COST 231 HATA	
eNodeB Antenna Height (m)	30	30
UE Antenna Height (m)	1,5	1,5
AHM	0,04	0,04
Cell Radius (km)	0,50	0,59
Cell Area for trisector (km2)	1,27	1,78
Site count	145	103
Number of coverage sites	145	

Table 1: Results of the coverage network planning of the city of Yaounde.

III.3 Capacity planning

The succession of tables 2, 3 and 4 below led to the obtaining of 244 capacity eNodeBs with a penetration rate of 20% for 4G services in the city of Yaounde.

III.3.1 Service model

	UL				DL					
Traffic parameters	Bearer rate (kbps)	PPP session time(s)	PPP session duty ratio	BLER	Bearer rate (kbps)	PPP session time(s)	PPP session duty ratio	BLER		
Voip	26,9	80	0,4	0,01	26,9	80	0,4	0,01		
Video Phone	62,53	70	1	0,01	62,53	70	1	0,01		
Video Conferencing	62,53	1800	1	0,01	62,53	1800	1	0,01		
Real Time Gaming	31,26	1800	0,2	0,01	125,06	1800	0,4	0,01		
Streaming Media	31,26	3600	0,05	0,01	250,11	3600	0,95	0,01		
IMS Signalling	15,63	7	0,2	0,01	15,63	7	0,2	0,01		
Web Browsing	62,53	1800	0,05	0,01	250,11	1800	0,05	0,01		
File Transfer	140,69	600	1	0,01	750,34	600	1	0,01		
Email	140,69	50	1	0,01	750,34	15	1	0,01		
P2P file sharing	250,11	1200	1	0,01	750,34	1200	1	0,01		

 Table 2 : Service model [10]

	URBAN			
User behavior	Traffic penetration	DIICA	Busy Hour Th	roughput per user (kbps)
	ratio	бпба	UL	DL
Voip	100%	1,3	0,38	0,38
Video Phone	20%	0,16	0,05	0,05
Video Conferencing	15%	0,15	0,85	0,85
Real Time Gaming	20%	0,2	0,15	1,21
Streaming Media	15%	0,15	0,04	6,48
IMS Signalling	30%	4	0,01	0,01
Web Browsing	100%	0,4	0,76	3,03
File Transfer	20%	0,2	1,14	6,06
Email	10%	0,3	0,07	0,11
P2P file sharing	20%	0,3	6,06	18,19
TOTAL			9,51	36,38

III.3.2 Traffic Model and Single user throughput

 Table 3 : Single user throughput [10]

III.3.3 Determination of the number of capacity eNodeBs

Table 4: Determination of the number of capacity eNodeBs [10]

	URBAN		Observations		
ITEM	UL	DL			
Total User Number	700000	700000	20% of the population		
Single user Throuhput (kbps)	9,51	36,38			
Total Network Throughput IP layer (Mbps)	6500,98	24869,14			
Total Network Throughput MAC layer (Mbps)	6630,94	25366,32	IP throughput/98,04%		
Single cell Throuhput (Mpbs)	65,03	104,16			
eNodeB site count	102	244			
			Maximum of UL and DL eNodeB		
Number of capacity sites	244		site count		

III.4 - Evolution of LTE Planning of the city of Yaounde from 2019 to 2029

By using a similar method taking into account the population growth rate in Cameroon, where Yaounde stands at 2.8% per year [12] and with an LTE penetration rate of 20%, it shows the following site planning adjustments for the city of Yaounde.

Year	Population (2.8% annual	Population to be covered (20%)	Number of eNodeBs
	increase)	de la population	
2019	3500000	700000	244
2020	3598000	719600	251
2021	3698744	739749	258
2022	3802309	760462	265
2023	3908773	781755	272
2024	4018219	803644	280
2025	4130729	826146	288
2026	4246390	849278	296
2027	4365289	873058	304
2028	4487517	897503	313
2029	4613167	922633	321

Table 5: Evolution of the number of eNodeB per year for a constant penetration rate.

III.5 Simulation in the ATOLL Planning Software

We consider the map of the city of Yaounde in Figure 3 and we position in Figure 4 the 244 4G sites. With the simulations done, the results on the maps 5, 7, 9 and 11 are obtained.

Fig. 3: Digital map of the city of Yaounde

Fig. 4: Positioning of 244 4G sites with 207 existing (3G converted 4G) and 37 new 4G sites

Fig. 5: Prediction of LTE network coverage of downlink transmitters

Display	/ type:		Field:		
Value	intervals		/ Best Si	gnal Level (dBm)	
		Min	Max		Legend
1		-70		Best Signal Level (dBm) >=-70	
2		-75		Best Signal Level (dBm) >=-75	
3		-80		Best Signal Level (dBm) > = -80	
4		-85		Best Signal Level (dBm) > = -85	
5		-90		Best Signal Level (dBm) > = -90	
6		-95		Best Signal Level (dBm) > = -95	
7		-100		Best Signal Level (dBm) >=-100	
8		-105		Best Signal Level (dBm) > = -105	

Fig. 6: Legend of downlink signal levels

Fig. 7: Prediction of LTE network coverage of downlink signal levels downlink transmitter DL

Display ty	pe:	Field:					
Value int	ervals	V PDSCH	/DSCH C/(I+N) Level (DL) (dB)				
	Min	Max		Legend			
1	30		PDSCH C/(I+N) Level (DL) (dB) >=30				
2	29		PDSCH C/(I+N) Level (DL) (dB) >=29				
3	28		PDSCH C/(I+N) Level (DL) (dB) >=28				
4	27		PDSCH C/(I+N) Level (DL) (dB) >=27				
5	26		PDSCH C/(I+N) Level (DL) (dB) >=26				
6	25		PDSCH C/(I+N) Level (DL) (dB) >=25				
7	24		PDSCH C/(I+N) Level (DL) (dB) >=24				
8	23		PDSCH C/(I+N) Level (DL) (dB) >=23				
9	22		PDSCH C/(I+N) Level (DL) (dB) >=22				
10	21		PDSCH C/(I+N) Level (DL) (dB) >=21				
11	20		PDSCH C/(I+N) Level (DL) (dB) >=20				
12	19		PDSCH C/(I+N) Level (DL) (dB) >=19				
13	18		PDSCH C/(I+N) Level (DL) (dB) >=18				
14	17		PDSCH C/(I+N) Level (DL) (dB) >=17				
15	16		PDSCH C/(I+N) Level (DL) (dB) >=16				
16	15		PDSCH C/(I+N) Level (DL) (dB) >=15				
17	14		PDSCH C/(I+N) Level (DL) (dB) >=14				
18	13		PDSCH C/(I+N) Level (DL) (dB) >=13				
19	12		PDSCH C/(I+N) Level (DL) (dB) >=12				
20	11		PDSCH C/(I+N) Level (DL) (dB) >=11				
21	10		PDSCH C/(I+N) Level (DL) (dB) >=10				
22	9		PDSCH C/(I+N) Level (DL) (dB) >=9				
23	8		PDSCH C/(I+N) Level (DL) (dB) >=8				
24	7		PDSCH C/(I+N) Level (DL) (dB) >=7				
25	6		PDSCH C/(I+N) Level (DL) (dB) $> = 6$				
26	5		PDSCH C/(I+N) Level (DL) (dB) >=5				
27	4		PDSCH C/(I+N) Level (DL) (dB) >=4				
28	3		PDSCH C/(I+N) Level (DL) (dB) $> = 3$				
29	2		PDSCH C/($I+N$) Level (DL) (dB) > =2				

Fig. 8: Legend of downlink Signal to noise and interference ratio levels

Fig. 9: Prediction of LTE network coverage of downlink Signal to noise and interference ratio

29	22 000	Peak RLC Channel Throughput (DL) (kbps) > =22 000	Displa	v tune			ield	
30	21 000	Peak RLC Channel Throughput (DL) (kbps) >=21 000	LC Channel Throughput (DL) (kbps) >= 21 000		lask f	IC Channel Throughout (DI) (choc)		
31	20 000	Peak RLC Channel Throughput (DL) (kbps) >=20 000	varue	meervars			eas. P	ac channel moughput (bc) (kops)
32	19 000	Peak RLC Channel Throughput (DL) (kbps) >= 19 000			Min	1 1	Мах	Legend
33	18,000	Peak RLC Chappel Throughput (DI) (kbps) >= 18,000	1		50 000	_		Peak RLC Channel Throughput (DL) (kbps) > = 50 000
24	17 000	Dask Ric Channel Throughput (DL) (kbps) = 17,000	2		49 000	_		Peak RLC Channel Throughput (DL) (kbps) > =49 000
24	17 000	Peak REC Channel Inroughput (DL) (kbps) >= 17 000	3		43 000			Peak RLC Channel Throughput (DL) (kbps) > =48 000
35	16 000	Peak RLC Channel Throughput (DL) (kbps) >= 16 000	-		46 000			Peak RLC Channel Throughput (DL) (kbps) > =47 000
36	15 000	Peak RLC Channel Throughput (DL) (kbps) >= 15 000	6		45 000			Peak RLC Channel Throughput (DL) (kbps) > =45 000
27	14 000	Pask BLC Chapped Throughout (DI) (khor) >=14,000	7		44 000			Peak RLC Channel Throughput (DL) (kbps) >=44 000
31	14 000	Peak REC channel mioughput (bc) (kups) > = 14 000	8	-	43 000			Peak RLC Channel Throughput (DL) (kbps) >=43 000
38	13 000	Peak RLC Channel Throughput (DL) (kbps) >= 13 000	9	-	42 000			Peak RLC Channel Throughput (DL) (kbps) > =42 000
39	12 000	Peak RLC Channel Throughput (DL) (kbps) >= 12 000	10	_	41 000			Peak RLC Channel Throughput (DL) (kbps) > =41 000
40	11.000	Bask BLC Channel Throughout (DI) (khor) > = 11,000	11		40 000			Peak RLC Channel Throughput (DL) (kbps) > = 40 000
40	11000	Peak REC channel mioughput (bc) (kops) >= 11 000	12		39 000			Peak RLC Channel Throughput (DL) (kbps) > = 39 000
41	10 000	Peak RLC Channel Throughput (DL) (kbps) >= 10 000	13		38 000			Peak RLC Channel Throughput (DL) (kbps) >= 38 000
42	9 000	Peak RLC Channel Throughput (DL) (kbps) >=9 000	14		37 000			Peak RLC Channel Throughput (DL) (kbps) > = 37 000
43	8,000	Peak BLC Channel Throughout (DL) (khos) >=8 000	16		35 000			Peak RLC Channel Throughput (DL) (kbps) >=35 000
	0 000	reak nee enanner mroughpar (bej (kapi)	17		14 000			Peak RLC Channel Throughput (DL) (kbps) > = 14,000
44	7 000	Peak RLC Channel Throughput (DL) (kbps) >=7 000	18		33 000			Peak RLC Channel Throughput (DL) (kbps) > = 33 000
45	6 000	Peak RLC Channel Throughput (DL) (kbps) >=6 000	19		32 000			Peak RLC Channel Throughput (DL) (kbps) > = 32 000
46	5 000	Peak PLC Channel Throughout (DL) (khos) >=5 000	20	_	31 000			Peak RLC Channel Throughput (DL) (kbps) > = 31 000
	3 000	Peak Rec channel milloughput (be) (keps) = 5 000	21		30 000			Peak RLC Channel Throughput (DL) (kbps) > = 30 000
4/	4 000	Peak RLC Channel Throughput (DL) (kbps) >=4 000	22		29 000			Peak RLC Channel Throughput (DL) (kbps) > = 29 000
48	3 000	Peak RLC Channel Throughput (DL) (kbps) > = 3 000	23		28 000			Peak RLC Channel Throughput (DL) (kbps) > =28 000
40	2 000	Peak RLC Channel Throughout (DI) (khor) >=2,000	24		27 000			Peak RLC Channel Throughput (DL) (kbps) >=27 000
			25		26 000			Peak RLC Channel Throughput (DL) (kbps) >=26 000
50	1 000	Peak RLC Channel Inroughput (DL) (Kbps) > = 1 000	26		25 000			Peak RLC Channel Throughput (DL) (kbps) >=25 000
51	0	Peak RLC Channel Throughput (DL) (kbps) >=0	28		23,000			Peak RLC Channel Throughput (DL) (kbps) = 24 000

Fig. 10 : Legend downlink channel throughputs

Fig. 11: Prediction of LTE network coverage of downlink channel throughput

IV. Conclusion

The purpose of an LTE radio network planning is to provide the relevant models for determining the number of elements in the radio network. In this context, an appropriate approach of using existing sites was

developed taking the case of an operator in the city of Yaounde in possession of an existing 3G network and projecting for a migration to the 4G network. It results from calculations that 244 sites are needed and the operator will have to deploy 37 additional sites by capitalizing the existing 207 sites. The simulations carried out made it possible to predict a total traffic coverage of the zone of interest and a better signal-to-noise and interference ratio, thus a good quality of service.

As perspective we envisage to simulate the coverage and quality of service produce by the location of eNodeB during each year of the period 2019 and 2029 considering the same penetration rate.

References

- Jaana Laiho, Achim Wacker, Tomá Novosad (editors). Radio Network Planning and Optimisation for UMTS. Second edition. England. John Wiley & Sons Ltd, 2006.
- [2]. Zhang J., Arunaba G., Jeffery G. A., Rias M.: "Fundamentals of LTE," Prentice Hall, 2011
- [3].
 Technical Specification: "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception", 3GPP TS 36.101 version 10.3.0 Release 10. https://www.etsi.org/deliver/etsi-ts/136100_136199/136101/10.03.00_60/ts_136101v100300p.pdf (consulté le 9 mars 2019)
- [4]. Ghassan A. A., Mahamod I. and Kasmiran J.:" Modeling and Performance Evaluation of LTE Networks with Different TCP Variants". International Scholarly and Scientific Research & Innovation 5(3), pp 443-448. (2011).
- [5]. Signals Research Group: "The LTE standard: Developed by a global community to support paired and unpaired spectrum deployments". https://www.qualcomm.com/media/documents/files/the-lte-standard.pdf (consulté le 9 mars 2019)
- [6]. Nafiz Imtiaz Bin Hamid, Md. Ashraful Hoque, Kazi Khairul Islam, Nominal and Detailed LTE Radio Network Planningconsidering Future Deployment in Dhaka City, International Journal of Computer Applications (0975 – 8887) Volume 50– No.17, July 2012
- [7]. Marwa Elbagir Mohammed, Khalid Hamid Bilal, LTE Radio Planning Using Atoll Radio Planning and Optimization Software, International Journal of Science and Research (IJSR), Volume 3 Issue 10, October 2014
- [8]. Abdullah A. M. Ghaleb, Adnan S. A. Kaid, Hassan W. H Ali, Haithem A. Esmaeel, Mahmoud A.M. Sadeq, Waseem M. Abdulsalam, Younis T.K Ahmed, Dr. Mahdi H A Ahmed, Coverage and Capacity Planning of LTE Network for-Taizz City, International Journal on Recent and Innovation Trends in Computing and Communication, April 2017.
- [9]. Anonyme, LTE Radio Network Planning Introduction, Huawei Technologies
- [10]. Anonyme, LTE eRan Product, RF design and Handoff procedure training
- [11]. Wikipedia, https://fr.wikipedia.org/wiki/Yaoundé#Situation_et_site
- [12]. Anonyme, Rapport national sur l'état de la population, Bureau Central des Recensements et des Etudes de Population, 2011